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This is the last of a 3 part series of papers 
published at the Control Systems '92 
Conference at Whistler, B.C.  describing the INTR
development of an advanced control 
application from concept to start-up.  Recent Oxygen
advances in dynamic simulation, adaptive to low
process control technologies and on-line thereby
analyzers provide the necessary environment to environ
develop new approaches to complex control competi
problems. This environment is described in the trend
companion papers Part 1: The Tool-High specific
Fidelity Real-time Dynamic Process Kappa
Simulation with Object Oriented optimal
Programming, Part 2: The Model-Fixed Time variatio
Zone Methodology for Plug Flow Simulations could 
as Applied to an Oxygen Delignification quality.
Reactor. 

Maintai
The resulting advanced control application normal
presented here addresses the problem of tight an adv
Kappa control under disturbance conditions in effectiv
an oxygen delignification reactor.  With dynami
modification, similar techniques are applicable 
to continuous digesters, bleach plants and 

ous reactors in other industries. 
 dynamic simulation tools, with high 

 process models are used to develop a 
daptive, dead time compensating, 
ve control strategy incorporating a 
ar kinetic model. The unique aspect of 
ptive nonlinear control technique is its 
o accurately predict and control highly 
ar processes and automatically learn and 
o changing process conditions. Its key 
 is the ability to compensate for any 
ct or changing model parameters 
ng for robust operation in real world 
ments. The strategy is easy to operate 
onstantly checks itself for prediction 
y via on-line kappa sensors. It can be 
ented in almost any DCS thereby 
g the need for external ”black boxes”. 
als to date show a reduction in outlet 
standard deviation compared to inlet 

standard deviation up to 65% depending 
the severity of the inlet Kappa 
nce. Tight Kappa control translates to 
table bleach plant operations, higher 
pulp, lower chemical costs and reduced 
mental impact. 

ODUCTION 

 delignification provides an opportunity 
er Kappa targets to the bleach plant, 
 reducing bleaching chemical costs and 
mental impact. Worldwide 
tive pressures have also resulted in a 

 toward tighter Kappa variation 
ations for higher quality pulp. Yet, 

 targets cannot be lowered to their 
 point without tight control over 
ns. Otherwise, excessive delignification 
result during upsets reducing pulp 
 

ning tight control of Kappa under all 
 and upset process conditions requires 
anced control strategy that can deal 
ely with the complex, changing  process 
cs. Tight control is complicated 

because of the reactor’s significant and varying 
dead time (retention time). Routine dead time 
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fluctuations due to production rate changes, 
consistency variations and other process 
disturbances create a major challenge to any 
control strategy. The effect on outlet Kappa of 
inlet chemical and temperature changes cannot 
be measured until after a significant delay 
(retention time of 45 - 90  minutes or more). 
By then it is too late to correct for any Kappa 
target errors. 

Precise control must consequently be based 
upon an accurate prediction of the resulting 
Kappa. Accurate prediction requires both 
knowledge of the process response 
characteristics and current process conditions. 

Due to process complexities, use of Kappa 
sensors in a traditional PID control loop has 
severe limitations that must be overcome by 
more advanced control techniques. 

his paper presents an innovative approach to 
predictive model based control. The paper is 
intended to provide basic understanding of the 
concepts incorporated for those without a 
control theory background. A minimal amount 
of state space description is included in the 
appendix for those so interested. 

MODEL BASED CONTROL­
BACKGROUND 

Due to the complexities of the Kappa control 
process (multivariable, time variant, highly 
nonlinear reaction kinetics, and long, varying 
dead-times) some type of model based control 
is recommended for tight Kappa regulation. 
Often, model based control is supervisory. This 
means it is used in an outer cascade loop that 
calculates setpoints for inner loop PID 
controllers. Basically, the models are used to 
predict process response and make appropriate 
control adjustments based on those predictions. 

Typically, if the model generates accurate 
predictions, and maintains stability, the control 
will be very good. 

The difficulty is developing an accurate model 
which will maintain its accuracy over time-
varying operating conditions. Models can be 
linear or non-linear, fixed or adaptive. Fixed 
models have parameters that are "fixed" based 
upon initial, or average test data. (See Figure 
1.) Adaptive models automatically adjust 
during operation to maintain model accuracy 
over time. Most successful applications of 
adaptive models to date have been linear. Most 
nonlinear models used in control are fixed due 
to the complexities traditionally inherent in 
adaptive nonlinear control. 

An adaptive linear model is often used as an 
approximation of the nonlinearities. The 
adaptation mechanism  attempts to generate a 
family of linear models by continuously 
adjusting parameters to approximate the 
nonlinearities. For highly nonlinear processes 
this is sometimes very difficult to accomplish 
as the adaptation mechanism can be strained to 
converge or remain stable under certain process 
conditions or highly nonlinear regions of the 
process. 

The traditional alternative, a fixed nonlinear 
model, would typically require recalibration 
and retuning of parameters often on a highly 
nonlinear time-variant process. 

ADAPTIVE NONLINEAR CONTROL 

What is needed is a reliable approach to 
adaptive nonlinear models for highly 
nonlinear time-varying processes. In addition, 
embedded dead-time compensation is needed 
for processes with long and varying dead-time. 

Presented at  Control Systems 92 Conference, Sept. 28 - Oct. 1, 1992, Whistler B.C., Technical Session CPPA, SPI and SPCI 



Feedback 
Controller 

eKref outlet K
O2 DELIG 
PROCESS 

Inlet K 
Kappa 
Analyzer 

+ 

-

Kappa 
Analyzer 

pulp 
flow 

consistency 

Feedforward 
Model 

+ 

++ 

+ 
+ 

+ 

pH 

Loop 
Controllers 

TempSP 

NaOHSP 

O2 SP 

Temperature 

NaOH flow 
O2 flow 

Figure 1. FIXED (Linear or Nonlinear) Model Based Control Strategy 

Kappa 

Decker 

Steam 

Mixer 

MC Pump 

O2 

Mixer 

O2 

Tower 

Blow 

Tank 

Analyzer 

Kappa 

Analyzer 

Stock 

Pump 

OWL/NAOH 

Steam 

Oxygen 

Figure 2. Oxygen Delignification Process. 

This paper describes  a new approach for 
developing model based control. It is both Reliable, tight control of a complex chemical 
adaptive and non-linear plus  variable dead process that is nonlinear, time varying, 
time compensating. Its design objectives and a multivariable, with  large dead time. 
description of the resulting Advanced Control 
Package follow. Similar techniques can be Process Description 
applied to other nonlinear processes with 
significant dead time. The oxygen delignification process is shown in 

Figure 2. Kappa measurements are taken both 
upstream and downstream of the reactor as 

OBJECTIVE shown. The continuous plug flow reactor’s 
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retention time will vary from 45 minutes to 90 
minutes or more depending on its design and 
production rate. This means that off target 
Kappa outlet measurements taken now cannot 
be effected by adjusting inlet chemicals; it is 
too late. The required adjustment should have 
been made 45-90 minutes ago. Also the 
“correct” adjustment should have been made 
under whatever disturbance conditions existed, 
considering the interrelated effect on Kappa of 
all multivariables (time, temperature, oxygen, 
and caustic). Kinetics of the reaction 
complicate prediction of Kappa because studies 
have shown that observed response 
characteristics can be explained by assuming 
there are 3 categories of lignin; nonreactive, 
slow reacting and fast reactin [15][16].  This 
should not be ignored by the control strategy 
model. 

The following control strategy development 
objectives were identified as necessary for tight 
Kappa control: 

• Accurate dead time compensation 

• Accurate model predictions over time 
and varying operation conditions 

• Self-checking/Self-tuning 

• Ease of use and support by staff 
unfamiliar with advanced control 

Implemetation in most DCSs 

• Compatible with any Kappa sensor 

The general criteria above dictated the 
following specific requirements: 

Predictive model requirements: 

• Nonlinear and adaptive with a 
sophisticated“continuous learn mode” (on-line 
identification) 

• Embedded chemical reaction kinetics 

CONTROL STRATEGY DESCRIPTION 

The following sections describe the resulting 
SODAC™ (Simons' Oxygen Delignification 
Advanced Control) * strategy, its 
implementation, and mill results. Variations to 
this adaptive nonlinear strategy are applicable 
to continuous digesters,  bleach plants and 
other non-pulp and paper chemical processes 
where plug flow reactors exhibiting long dead 
times and nonlinear reaction kinetics are 
involved. From the extensive simulations 
conducted to date and initial mill trials, it 
appears the strategy has met all objectives. In 
particular, tests confirm the control strategy 
model’s ability to correct itself even when 
every model parameter is in error compared to 
the real plant. 

It is well documented that the majority of 
model based adaptive control installations are 
based upon linear control theory (and 
associated linear models) due to the 
complexities of designing/implementing truly 
robust nonlinear model based adaptive control. 
The strategy presented in this paper can be 
considered a modified form or an extension of 
IMC (Internal Model Control methodology) 
[18]. The significant development presented in 
this paper is the result of integrating nonlinear 
models with recent linear adaptive control 
developments and on-line identification 
techniques in a manner which reduces the 
historic complexity of nonlinear adaptive 
control. This technique incorporates Nonlinear 
Mapping Control (NMC™) since it allows 
mapping the nonlinear portions of a problem 
into the linear domain where linear state space 
models can be more easily integrated to 
provide model adaptation. The nonlinear 
portions of the model actually reduce the work 
of the adaptive control mechanisms thereby 
increasing its robustness under varying real 
world conditions. 

The control strategy incorporates a nonlinear 
process model with dead time compensation 
and an on-line correction module to  assure that 
predictions made by the control algorithm at 
every sampling step are optimal. The resulting 
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strategy has 3 manipulation variables (NaOH 
dosage, oxygen dosage, and inlet temperature) 
and 5 major feedback signals( inlet Kappa 
number, outlet Kappa number, oxygen dosage, 
NaOH dosage, and inlet temperature). The 
self-checking/ self-adapting feature of the 
model means that its sophistication does not 
impact ease of use by mill personnel. 

The control strategy  has five modules (See 
Figure 4.). Reference the appendix for more 
information regarding algorithm development 
for each module. 

1. Nonlinear Model Module 

The Nonlinear Model Module incorporates  a 
kinetic model that describes the chemical 
reactions in the reactor. It calculates a coarse 
prediction of the outlet Kappa at the end of the 
retention time. (Other commercially available 
packages use a somewhat similar prediction for 
control without further on-line fine tuning.) 

2. On-Line Correction Module (State Space 
Model) 

The outlet Kappa number  signal in Figure 3. 
shows that the discrepancy between the outlet 
Kappa number predicted by the kinetic model 

(Ke) and the actual outlet Kappa 
number(Kout), f(z),  can be corrected by an 
adaptive state space model (see appendix) 
using NMC™. The model is continuously 
identified on-line to establish an accurate 
relationship between the Kappa number 

Self correcting even when every model 
parameter is in  error compared to the real plant 

Figure 3. O
2 

Delignification Reactor Outlet 
Kappa Number Signal Structure 

* 
SODAC™ and NMC™ are registered trademarks of Simons-
Eastern Consultants, Inc., Atlanta Georgia. 

K

Figure 4. Adaptive/Predictive Nonlinear Advanced Control Strategy (SODAC™) 
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number at the end of the process. This model 
fine tunes the coarsely estimated Kappa number 
prediction. It analyzes the  Kappa number and 
combines the results with the process knowledge 
“learned” by the identification module. This 
procedure compensate  process dead time, fine 
tunes its previous prediction and compensates 
for any initially incorrect or drifting model 
parameters. 

3. Learning Module (On-Line Identification ) 

The Learning Module calculates the output 
matrix parameters  required to enhance the model 
prediction by correlating state variables generated 
in the On-Line Correction Module with the actual 
outlet Kappa number measurement. The output 
vector C(k) is updated at every sampling interval. 

4. Predictive Control Module 

The Predictive Control Module uses a  predictive 
control law as the feedback control algorithm 
due to its simplicity of use and easy handling of 
varying dead-time [7]. 
The Predictive Control Module uses the fine 
tuned process model and retention prediction to 
calculate the current required Kappa number 
needed to produce the desired target Kappa at the 
outlet. This is accomplished by inverting the 
model at the end of the retention time and 
moving the estimate in reverse, until it reaches 
back to the current time step. Thus, by 
controlling to the currently needed Kappa number 
just calculated, it will provide an exact future 
Kappa number target at the outlet of the oxygen 
delignification process - if the  actual process 
parameters do not deviate from those that have 
been identified up to the current time step. In 
practice, this will provide a very well controlled 
outlet Kappa number because the disturbance is 
“learned”  and the prediction corrected by the 
On-Line Correction Module at every sampled 
step (approximately every 20 minutes). 

5. Nonlinear Set Point Adjustment Module

 The current  required Kappa number received 
from the Predictive Control Module is the 
updated reference in setting the proper inlet 
temperature, caustic, and oxygen set points based 
on the inverted relationship established in the 
Nonlinear Model. Weighting factors can be 
assigned to the set points  such that priority of 
adjustments can be defined. For example, 
caustic dosage is typically used as the main 
control variable while temperature and oxygen 
dosage ratios are kept constant until reaching a 
caustic limit. 

Operating Modes 

The control strategy has three operating modes: 

1. Learn Only Mode 

This is the start-up mode of the control strategy. 
In this mode, the control strategy learns 
(identifies) the particular process idiosyncrasies 
and adjusts its model parameters to fit. The 
strategy is not in control, but it is learning to 
predict outlet Kappa accurately (within a 
specified tolerance of the actual measured 
Kappa). When the model has learned enough to 
predict outlet Kappa  accurately, the operator is 
notified to turn on the normal predictive control 
mode. Prediction errors are continuously 
monitored and corrected as part of the self­
check/self adjustment features. The predicted 
outlet Kappa number also shows operators the 
reasoning behind its actions when in automatic 
predictive control. 

2. Normal Mode (Learn Mode plus Automatic 
Predictive Control) 

This is the normal operating mode after the initial 
learning phase. The strategy calculates the 
setpoints needed for temperature and chemicals 
based upon the model predicted Kappa compared 
to the desired Kappa target. These remote set 
points are sent to the cascaded PID loop 
controllers that  regulate the desired chemical 
dosage and steam flow. The predicted future 
Kappa number and the subsequent actual sampled 
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Kappa number are displayed with the estimated 
oxygen reactor retention time. This gives 
operators a graphical presentation of the 
controller’s performance. Continuous operation 
of learn mode assures that conditions such as 
changing wood species, process dynamic 
conditions, disturbances, sensor drift, and 
production changes are all compensated to 
maintain prediction accuracy without manual 
intervention. 

As long as the model trends show accurate 
predictions, the operator should have every 
confidence that it will continue to do so in the 
immediate future. If the accuracy begins to drift 
uncorrected outside a specified limit, an alarm 
will signal the operator  while the system places 
itself into “learn only” mode until the model 
predictions are of acceptable accuracy. Then the 
supervisory control will be automatically 
resumed and the operator notified. These 
practical features help operators develop trust in 
advanced control. 

3. Predictive Control Only (Learn Mode 
Disabled) 

This mode uses the last identified process model 
to compute proper control action. The model no 
longer continues to learn and correct itself 
(adaptation is off). This mode is used  only when 
the oxygen delignification process has to run 
under invalid Kappa number readings, for 
example during sensor maintenance or 
malfunction. Conceptually this can be thought of 
as a fixed nonlinear model or a “sophisticated 
feedforward” mode. Other commercially 
available packages use this as their normal mode. 

DCS IMPLEMENTATION 

Advanced control can be implemented in almost 
any DCS or microcomputer with a high level 
language capability such as Basic, “C”, 
FORTRAN or Pascal. The current project uses 
a Rosemount System 3 DCS. The control 
strategy is programmed using  Rosemount Batch 
Language (modified basic) in a System Resource 
Unit (SRU). 

Operators monitor the controller's performance 
by the on-line inlet and outlet Kappa standard 
deviations, prediction and sensor measurement 
comparisons and trends of the oxygen 
delignification process. The first installation of 
this strategy utilizes on-line BTG Kappa 
analyzers. 
TESTING METHODOLOGY 

The DCS was staged and tested under near “in 
service” conditions in Simons-Eastern's Control 
system staging facility in Atlanta. The DCS 
system was connected to a simulated process 
using an advanced systems test simulator (ASTS) 
to verify correct software implementation. (See 
Figure 5. for more information.) The process 
simulator runs a high fidelity model of the 
oxygen delignification process. 

HIGH FIDELITY  PROCESS MODEL 

A design fidelity dynamic simulation model of 
the process was developed with the Simons 
IDEAS™ Simulator to represent the “actual 
process” in our tests [20][21]. A high fidelity was 
required to generate rigorous simulation 
scenarios that test the strategy's ability to 
accurately control and continuously learn under a 
wide range of process upset conditions,  i.e., low 
consistency, production changes, excessive black 
liquor carryover. 

The fidelity of the process model used for testing 
is summarized below. 

Reactor vessel model includes detailed Chemical 
reaction kinetics, dynamic material,energy, and 
momentum balances are calculatedfor each  zone 
in real time once every second. In addition to the 
high fidelity process model, a simplified "faster 
than real time model" of the process was used to 
generate rapidly changing process conditions and 
disturbances to verify the control strategy model 
could "learn and adapt" to almost any process 
condition. The model’s high fidelity and 
portable DCS console interface also make it ideal 
for training operators on the complexities of the 
oxygen delignification process and importance of 
adaptive/predictive nonlinear advanced control. 
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SIMULATION RESULTS 

Representative samples of generic simulation 
tests are included in Figures 6. and 7.  (Test 
results shown are not tied to a specific 
installation.) The tests show the strategy's ability 
to tightly control outlet Kappa under widely 
varying input conditions and model 
parameter/actual process mismatch. As shown in 
Figure 7.,  this is due to the high accuracy of the 
model prediction. This is illustrated by the fact 
that the  model prediction curve and the actual 
simulated Kappa measurement curve almost 
coincide. Also note the control improvement with 
the advanced control strategy over a close to 
optimally tuned PID with ratio feedforward 
control. 

Many simulation runs were made under 
conditions of varying inlet Kappa, production 
rate, consistency  and other disturbances. Tests 
show an average reduction in standard deviation 
of Kappa at the oxygen stage outlet compared to 
the inlet of 70% to 85% with large inlet 
disturbances. These Kappa standard deviation 
reductions were 3 to 4 times greater than that 
produced by a typically tuned PID loop with ratio 
control. 

MILL START-UP OBSERVATIONS 

The previous method of control at the mill used a 
chemical dosage controller to regulate the 
chemical addition from the dosage set points 
entered by the operator. This control 
configuration is open loop and does not attempt 
minimization of outlet Kappa number variation 
due to process complexities. 

The oxygen delignification process dynamics is 
dominated by the nonlinear behavior of the 
delignification rates and the time variant nature 
of the process conditions. The following process 
characteristics were observed and verified during 
mill trials. 

Process Definition and Verification•Nonlinearity 
For a certain percent increase in chemical dosage 
at the inlet of the oxygen delignification reactor, 
one does not observe a proportional drop in 

Kappa number at the outlet of the reactor. The 
percent of outlet Kappa number reduction 
appears to be dependent on the inlet Kappa 
number, inlet temperature, and inlet chemical 
dosages. 
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variations are not precisely represented 
• Time Variance in the lab samples. 

For similar oxygen reactor inlet •Retention Time 
chemical dosages, inlet Kappa number 
and inlet temperature,  we observed Retention time is inversely varying with 
different percent of Kappa number production, and  is affected to some 
reduction at the outlet of the reactor on degree by reactor pulp channelling. 
different days.  This change in the The retention time is a pure,  variable 
percent of reduction in Kappa number is dead time in the process. 
not always repeatable.  Possible 
explanations to this behavior are that the Due to the above observations, it was 
different defoamers added at the concluded that a fixed model based strategy 
upstream of the process to eliminate would have difficulty controlling the 
process foaming affected the rate of O

2 
process without periodic operator 

delignification differently, and also,  the intervention and retuning of model 
caustic strength and oxygen purity parameters. 
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Figure 6. Oxygen Reactor Model Advanced Control Results 

FIGURE 7. Advanced Control Strategy Simulation Comparison 
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MILL PERFORMANCE 

Figures 9. and 10. show a 1 week period of 
operation before and after installation of the 
advanced control strategy. Figure 9. shows 
the reactor inlet and outlet Kappa number 
variations under dosage control only, just 
prior to mill trials of advanced control. 
Note the fluctuation similarities between the 
inlet and outlet Kappa numbers, and even 
the slight increase in outlet Kappa number 
variance compared with the inlet. This 
translates to an increase  in outlet standard 
deviation relating to inlet standard deviation 
of almost 10%. In the adaptive nonlinear 
control mode, instead of using the fixed 
chemical dosage rate set points entered by 
the operator, the dosage controllers use the 
remote setpoints computed by  the adaptive 
control strategy. In this mode, the operator 
enters the desired outlet Kappa setpoint to 
the control strategy directly. Figure 10. 
shows the resulting Kappa number variation 
at outlet of the reactor under the adaptive 
nonlinear control strategy. This shows a 
reduction in standard deviation of outlet 
Kappa compared to the inlet of 55.5%, 
representing an approximately 65% 
improvement over the period prior to 
activating advanced control. 

Mill performance to date has shown the 
strategy's ability to handle the process 
complexities during widely varying inlet 
disturbances in a very robust manner. The 
continuous on-line system identification and 
adaptive control modules have remained 
stable during all operating conditions 
experienced to date as the analysis and 
simulations predicted. The primary 
requirement is to provide routine 
maintenance on the Kappa 
analyzer/sampling system to keep them in 
good working condition and correlating well 
with lab tests. General observations show 
that the performance increases as the 
severity of the inlet disturbances increases. 
During large inlet disturbances, the 
reduction of outlet Kappa standard deviation 
compared to the inlet standard deviation 

appears to be a 65% reduction. During less 
severe inlet disturbances standard deviation 
reduction appears to be between 4O% to 
50%. With very low inlet Kappa standard 
deviations the reduction of outlet to inlet 
can drop to 35% to 40%. 

Simulation versus Mill Performance 

Most simulations were conducted with 
relatively large inlet disturbances, showing a 
70% to 85% improvement in Kappa 
standard deviation compared to the apparent 
65% improvement under severe 
disturbances in initial mill trials. There was 
determined to be two primary reasons for 
this discrepancy. 

1. Analyzer Sampling Rate 

All simulations were done assuming 
Kappa samples on the inlet and 
outlet would provide signals to the 
strategy at the originally planned 
sample rate of every 12 minutes. 
This sample rate would  provide the 
strategy with a measure of inlet 
disturbances and a check on the 
accuracy of the model's prediction 5 
times per hour, thereby enabling 
frequent adaptation and correction. 
The actual  mill installation resulted 
in Kappa sample rates of 20 minutes 
or only 3 times per hour. These 
rates resulted largely from the 
routing required by the sample lines 
and location of the analyzer. It is 
anticipated, as the simulation 
showed, that performance would be 
better with the higher sample rate. 

2. Inlet Disturbance 

The frequency of noise disturbances 
used in the model were much higher 
than the actual predominate 
frequencies observed at mill start­
up. The reactor model assumptions 
which used 143 zones to 
approximate a continuous reactor 
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will filter out high frequency 
disturbances even with no control. 

When the above two assumptions are taken 
into account in the simulation, the simulator 
predicted performance provides good 
agreement with that observed in the field to 
date. 

Finally, most other model based control 
techniques published to date for oxygen 
delignification advanced control have been 
based primarily upon fixed model control. 

Consequently, it is anticipated that a robust 
adaptive nonlinear approach (even if no 
better in performance than fixed models 
initially) would maintain its performance 
over a much longer period of time without 
intervention by plant specialists for model 
tuning. This is because maintaining 
optimum predictive accuracy of fixed 
models may require periodic re-
identification, re-calibration and tuning in 
contrast to an adaptive strategy with 
continuous identification "learn" modes that 
accomplish these tasks automatically. 

Figure 9. Oxygen Reactor Outlet Kappa Number Variation Under Dosage Control
 
Only.
 

Figure 10. Oxygen Reactor Outlet Kappa Variation Under Dosage Control and
 
SODAC™ Regulation.
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BENEFITS 

Clearly, even small reductions in Kappa variation 
from the oxygen stage have significant effect on 
bleach plant operations. Reduction in standard 
deviation allows lower Kappa targets to the 
bleach plant resulting in significant cost savings 
in bleaching chemicals. Oxygen stage chemical 
usage is also optimized. Consistently, higher 
quality pulp is produced at lower cost and with 
significant reduction in environmental impact. 
Table 1 summarizes the benefits. Tests to date 
demonstrate the potential for large improvements 
in standard Kappa deviation under real world 
upset conditions simply by the addition of Kappa 
sensors and an adaptive/predictive nonlinear 
advanced control software package. Its self­
checking/self-correcting features  make it easy to 
use by operators unfamiliar with advanced 
control. 

The availability of a high fidelity real time 
process model means operators can be trained to 
understand the oxygen delignification process in 
greater depth including the need for advanced 
control. 

TABLE 1 

BENEFITS OF ADVANCED CONTROL 

1. Lowers chlorinated organic chemical 
compounds discharged to the 
environment including dioxins 

2. Reduces bleaching chemical costs 

3. Stabilizes bleach plant operation 

4. Allows greater disturbances upstream of 
theoxygen stage and still achieve acceptable 
discharge Kappa numbers 

5. Allows minimum Kappa number targets 
andensure pulp viscosity and strength are 
maintained 

7. Reduces adverse effects of consistency 
variations, production changes, species 
changes, excessive black liquor carryover and 
other process disturbances

 8. Allows more uniform brightness 

CONCLUSION 

A new technique is available for oxygen 
delignification advanced control that is both 
adaptive and nonlinear plus dead time 
compensating. It addresses these difficult 
control issues by generating reliable predictions 
of Kappa after “learning” specific process 
idiosyncrasies. There is no longer a need for 
fixed kinetic models that cannot adapt to 
changing process conditions, nor a requirement to 
accept the limitations of linear adaptive control 
on nonlinear processes. Based upon the above 
observations and then monitoring the operation 
of the advance strategy's adaptive modules in 
operation, it was concluded that  a fixed model 
based strategy would have difficulty controlling 
this process without periodic operator 
intervention and retuning of the model 
parameters. The adaptive predictive nonlinear 
control strategy appears to address these 
complexities without operator intervention. 
Reductions in standard deviation of Kappa with 
advanced control compared to the previous 
dosage control only was shown to be 
approximately 65% in initial mill trials. This 
approach also has application to other complex 
nonlinear processes with significant dead time. 
This includes  other bleach plant control loops 
and continuous digester Kappa control. With self­
checking/self-correcting features advanced 
control need not complicate operations and 
maintenance. Compatibility with most DCS 
systems and Kappa sensors mean third party 
black boxes are not needed to improve plant 
operations. 
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APPENDIX: ADVANCED CONTROL 
STRATEGY FORMULATION 

1. Nonlinear Kinetic Model Formulation 

The fundamental kinetics of oxygen bleaching 
have been studied over years[12][13], and 
several kinetic equations have been proposed by 
Edwards and Norberg[6], Teder and Olm[19], 
Hsu and Hsieh[9][10][11] and Myers and 
Edwards[15][16]. Among the proposed oxygen 
delignification kinetic equations, the rate 
equations presented by M. Myers and L. Edwards 
is used in this module due to its insensitivity to 
large inlet Kappa number fluctuation, and their 
close correlation with certain mill data. 
The kinetic equations have the following form: 

dKf ) 0.43 Kf=-1.51(105)e(-31.6 
[O2]liqdt RT 

(1) 

(-31.6dKs ) 0.43 Ks[OH]0.875=-1.51(105)e RT [O2]liqdt 
(2) 

with the oxygen concentration expressed as 
kg/m3, and the initial fast and slow lignin 
conditions defined as: 

Kf=0.225Ki 

Ks=0.675Ki 

and 

Ki=inlet Kappa number. 

This set of equations is solved analytically, and 
the resulting solution is used  as the coarse 
prediction equation. 

2. State Space Model  Representation of F(z) 
(On-Line Correction Module) 

X(k+1)=AX(k)+Bu(k) (3) 

y(k)=C
T
X(k) (4) 

where 

A= system matrix. 
B = input matrix. 
C = output matrix. 
X(k)= actual state variables(correction 
variables). 
y(k)= Kout; reactor outlet Kappa number. 
u(k)= Ke; the coarse prediction. 
^  = Estimated/Predicted Values 

Note: The specific derivation of F(z) with NMC™ is 
proprietary to SODAC™ and available on a client 
confidential basis. 

3. On-Line Identification Algorithm 

The on-line identification algorithm of the 
Learning Module  uses a modified recursive least 
square method [1-5][14] to identify the output 
vector C(k). Recursive least squares when 
applied to output vector (C(k)) identification can 
be defined as: 

P(k-1)X(k) 
CTC(k)=C(k-1)+ [y(k)- (k-1)X(k) 

1+XT(k)P(k-1)X(k) (5) 

P(k-1)X(k)XT(k)P(k-1)
P(k)=P(k-1)­

1+XT(k)P(k-1)X(k)  (6) 
4. Predictive Control  Algorithm 

The Predictive Control Module uses a  predictive 
control law as the feedback control algorithm 
due to its simplicity of use and easy handling of 
varying dead time[7]. 
From equation 4, we  can write the control law 
as follow, 

y(k+n)=y(k)-C
T
X(k)+C

T
X(k+n)  (7) 
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with y(k+n)  equals the future set point reference 
at time step k+n. 

Using equation 3 recusively under the 
assumption that future inputs u(k+1), u(k+2), ... 
u(k+n)  equal to the current input u(k), we get 

X(k+n)=AnX(k)+(An-1+An-2+.. A+I)Bu(k) (8)

 Combining equations 7, and 8 and solve for the 
current predictive output u(k), we obtain[17][18] 

yr-(y(k)-y(k))-aX(k) 
u(k)=

b (9) 
with 

yr=Set Point. 

a=C
T
An 

y(k)=estimated y(k) by the process model. 

and 
Tb=C (An-1+...+ I)B 

Presented at  Control Systems 92 Conference, Sept. 28 - Oct. 1, 1992, Whistler B.C., Technical Session CPPA, SPI and SPCI 




